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New modular P-chiral ligands for Rh-catalyzed
asymmetric hydrogenation
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Abstract—New modular P-chiral ligands have been prepared from commercially available (S)-a,a-diphenylprolinol. With these new
types of ligands, up to 95% ee was achieved in the Rh-catalyzed asymmetric hydrogenation of functionalized olefins.
� 2006 Elsevier Ltd. All rights reserved.
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We recently reported the synthesis and catalytic applica-
tion to asymmetric hydrogenation of P,P-bidentate
ligands derived from commercially available (S)-a,a-
diphenylprolinol.1 Recent catalytic results showing that
traditional chelating ligands are not necessary to achieve
a high enantioselectivity2 prompted us to develop
further analogous P-monodentate ligands.

In contrast to the extensive use of BINOL-based
monodentate chiral phosphites, phosphonites, and
phosphoramidites,3 little is known concerning similar
ligands based on other building blocks.4 The concept of
replacing the BINOL chiral scaffold with amino alcohols
leads to the design of new chiral ligands. The variable
environment of the phosphorus atom in such com-
pounds provides an excellent opportunity for facile
modular construction of structurally tunable ligands,
which can be considered as one of the advantages of this
class of ligands.

In this letter, we describe the synthesis of (S)-a,a-diphen-
ylprolinol derived P-chiral monodentate ligands and
some preliminary results of their application in Rh-cat-
alyzed asymmetric hydrogenation.

Synthesis of ligands involves diastereoselective phos-
phorylation of 1 by PCl3 with an exclusive formation
of (S,RP)-25 followed by the standard phosphorylation
of alcohols (Scheme 1).6 An alternative procedure used
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for the preparation of phosphonite ligands 3m–t is the
treatment of 1 with chlorophosphines RPCl2 as
phosphorylating agent (Scheme 2).2d,7 Monodentate
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phosphoramidite derivatives 3u–v were prepared by
reacting 1 with hexamethyl- and ethylphosphorustri-
amide in refluxing toluene (Scheme 3).2e,8
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Table 1. Rh-catalyzed olefin-hydrogenationa

Entry Ligand ee of 5 ee of 7 ee of 9

1 3a 78 (S) 84.6 (S) 90.2 (R)
2 3b 87.2 (S) 91 (S) 87 (R)
An X-ray analysis of 3g9 was performed in order to con-
firm its structure and determine absolute configuration
at the phosphorus atom (Fig. 1). According to the X-
ray diffraction data, the ligand has an expected pseudo-
equatorial orientation of the exocyclic substituent at the
phosphorus atom (i.e., S configuration at the P-stereo-
center).
Figure 1. X-ray crystal structure of 3g.

3 3c 63.2 (S) 69.4 (S) 84.3 (R)
4 3d 67.8 (S) 74.6 (S) 62.4 (R)
5 3e 54.4 (S) 71 (S) 53.3 (R)
6 3f 76.2 (S) 77.2 (S) 62 (R)
7 3g 25.4 (S) 21.8 (S) 18.8 (R)
8 3h 60.6 (S) 43.4 (S) 32.8 (R)
9 3i 87.4 (S) 88.3 (S) 84 (R)

10 3j 21.8 (S) 25 (S) 32.8 (R)
11 3k 76.2 (S) 73.2 (S) 87.3 (R)
12 3l 91.8 (S) 91.3 (S) 94.5 (R)
13 3m 95.2 (S) 88 (S) 60.4 (R)
14 3n 91.7 (S) 83.7 (S) 65.5 (R)
15 3o 87.6 (S) 76.8 (S) 60.6 (R)
16 3p 43b (S) 71.6c (S) 24.2d(R)
17 3r 35.8e (S) 69.2f (S) 16.2g (R)
18 3s 35h (S) —i —j

19 3t 80.7 (S) 71.8 (S) 62 (R)
20 3u 88.4 (S) 91.1 (S) 61 (R)
21 3v 47.6k (S) 59l (S) 44.4m (R)

a Rh/substrate ratio 1:1000, CH2Cl2, 1.3 bar H2, 20 �C, 20 h, conver-
sion: 100%.

b Conversion: 85%.
c Conversion: 72%.
d Conversion: 64%.
e Conversion: 58%.
f Conversion: 68%.
g Conversion: 38%.
h Conversion: 10%.
i Conversion: 3%.
j Conversion: 2%.
k Conversion: 78%.
l Conversion: 79%.
m Conversion: 49%.
The new ligands were efficiently applied in the Rh-cata-
lyzed hydrogenation of common benchmark substrates,
namely, methyl a-acetylaminocinnamate 4, methyl a-
acetamidoacrylate 6, and dimethyl itaconate 8 (Scheme
4). In all cases the cationic rhodium catalyst was pre-
pared in situ by treating [Rh(cod)2]BF4 with 2 equiv of
the corresponding monodentate ligand in CH2Cl2.

The results summarized in Table 1 show that the degree
of enantioselectivity strongly depends on the nature of
the R-group in the ligands. Increasing of the substituent
R steric demands by changing methyl and ethyl groups
to bulkier ones led to a sharp decrease of enantioselec-
tivity (entry 1 and 2 vs 3–5; entry 13 and 14 vs 15–18;
entry 20 vs 21).
The configuration at R-substituent plays a very impor-
tant role. (R,S,SP)-3k represents a matched (entry 11)
case versus mismatched case (S,S,SP)-3j (entry 10).
The best results were shown by ligand 3l (entry 12,
91–95% ee) prepared from 1,4:3,6-dianhydro-DD-manni-
tol. From entries 1, 13, 20 it becomes evident that the
nature of phosphorus atom (phosphites, phosphonites,
and phosphoramidites) has a pronounced influence on
the enantioselectivity in hydrogenation. The results
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obtained in the asymmetric hydrogenation of dimethyl
itaconate followed the same trend as those for methyl
a-acetamidoacrylate and methyl a-acetylaminocinna-
mate, but the enantioselectivity for phosphonites 3m–t
and phosphoramidites 3u–v were somewhat lower.

In summary, new modular P-chiral ligands derived from
(S)-a,a-diphenylprolinol have been synthesized for the
first time. The new ligands have demonstrated a high
enantioselectivity in the Rh-catalyzed hydrogenation of
methyl a-acetamidoacrylate (up to 91% ee), methyl a-
acetylaminocinnamate (up to 95% ee), and dimethyl
itaconate (up to 95% ee). Also, we have taken the advan-
tage of these highly modular ligands to show that cata-
lyst optimization can be done easily by variation of the
substituent attached to the phosphorus atom.
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